Wednesday, 3 February 2016

General Method statement & Design of a Ground Improvement By Vibro Replacement ( Construction of Stone Columns)



1.0 INTRODUCTION  

  • This document outlines the general procedure for the construction of Stone Columns by wet top feed method by using heavy duty Depth vibrators
  • Soil Improvement by vibro replacement ( Stone Columns)
2.0 Equipment

The depth vibrator VL 18 vibroprobe consists of two elements, the vibrators and the following tubes

Figure 1: General arrangement of a vibroprobe 



Figure 2: General arrangement of a vibroprobe 


Eccentric weights in the vibrator section, which is approximately 3.5m to 4.1m in length, are rotated using an electric motor, thereby generating vibrations in a horizontal plane at the tip of the vibroprobe.

When the vibrator is operating the follower tubes remain almost stationary due to the dampening effect of the flexible vibration damper, or isolator. Fins on the side of the vibrator prevent rotation of the vibroprobe in the ground and assist in transmission of compactive effort tot the ground.


There is a range of different vibroprobes, and example specifications are shown in Table 1 below:

Manufacturer
Vibro
Machine name
VL18
Length [m]
10-18
Diameter [mm]
40-60
Motor[kW]
130
Speed [min-1]
20-80
Dyn. Force [kN]
300











Table 1: Example vibroprobe specifications.


Typically the following equipment would be required for a crane mounted system.

FOR STONE COLUMNS

With VL18
Crane
50 tons
Genset
350 KVA
Water Pump
6 to 10 bars
Loader
CAT 930 to 966
MISC
Sledge (for Genset)














The vibroprobe is usually suspended from a conventional crawler crane (Figure 2) for deeper treatment (say greater than 8m), but for treatment depths of up to about 8m the vibroprobe may be mounted on an excavator base machine (Figure 3). A mobile generator is used to provide power to the electric motor in the vibrator.
Figure 3: Wet Vibro Stone Column Rig for deep treatment.

Figure 4: Wet Vibro Stone Column Rig for deep treatment.


3.0  STONE COLUMN CONSTRUCTION

a) During penetration water is discharged at the tip of the vibroprobe: water is carried through the follower tubes and the vibration damper to the top of the vibrator where passageways in the wall of the vibroprobe lead it to pipes fixed to the outside of the vibrator. These direct the water to the tip. Penetration to the required depth is achieved by a combination of vibration and the jetting action of water and/or air. If only air is used, the in situ soil is displaced sideways. Using water only, disturbed material is also flushed out of the hole. When the required depth is reached, the amount of water discharged from the tip of the vibroprobe is adjested so that the water level in the hole stays at about 1.5m above ground water table or working platform level. This prevents the collapse of the hole. 

b) During construction of the stone column, spray water and/or air jets in the side of the follow-up tubes may be used. The vibroprobe is lifted by between 0.5m and 1m and a small charge of gravel or crushed aggregate is introduced into the bore which finds its way down the annular space around the vibroprobe. The vibroprobe is partially re-penetrated to compact the stone and is then lifted by another 0.5m to 1m. A further charge of aggregate is then added which is also compacted by partial re-penetration of the vibroprobe. Radial forces produced by the vibrator force the added material horizontally out against the in situ soil, thereby compacting it. 

The filling / compaction cycle is repeated in upward increments up to the working platform level. During this operation, additional gravel or stone is added to the hole but without overfilling to avoid bridging of the gravel; thus a stone column of dense granular material interlocking with the surrounding ground is formed
Figure 5: Construction of stone 

Figure 6: Construction of stone 

Figure 7: Construction of stone 

Figure 8: Construction of stone 

Figure 8: Vibreprobe
Figure 9: Construction of stone 
Figure 10 Stone Columns Construction
Figure 11 Stone Columns Construction


4.0 QUALITY CONTROL  

The design of stone columns relies on the reinforcing effect of the highly compacted stone columns within the soil. Important design parameters used in the design are the cross section area of the stone columns and the grid spacing of the columns. It is therefore necessary to ensure that these parameters are achieved during installation. 
The aggregate is supplied to the column location by means of a calibrated bucket to enable accurate measurement and recording of the stone consumption of each column. The number of buckets of aggregate used in each stone column is recorded manually on the Daily Site Record Sheets (sample presented in Daily Report Table). 
For every column, a Daily Record Sheet will be submitted as per the sample (if needed) in the Daily Report Table.

4.1 Compaction Point Layout Drawings  

Positioning the probe at each compaction point will be done by physically pegging each point with setting out from Grid Lines as provided by the Main Contractor

4.2 Daily Records (As Attached)

Daily records will be kept and submitted to the Engineer for information and review and the record will consist of the following details:-
a) Date
b) Compaction Point or Stone Column Reference Number
c) Depth of Penetration 
d) Vibratory Power Consumption during penetration and compaction. e) Record depth of obstruction     encountered, if any. 
f) Stone consumption 

5.0 FIELD QA/QC 

5.1 Quality of back fill material

Prior to commencement of improvement works soil parameters for aggregate material introduced into the static design calculation must be verified based on laboratory tests. 

Grain size analysis, Proctor Test and direct Shear Test shall be performed and results will be provided to the Geotechnical Expert for approval. 

5.2 Production of Stone Columns

The specific details of each stone column constructed shall be monitored in soil improvement record sheets including the following information: 
  •  No. and location of column 
  •  Start Time - Finish Time 
  •  Top of Column (Working Level) 
  •  Termination Depth 
  •  Material Consumption 

5.3 Large Scale Plate Load Test

One (1) large scale plate load test shall be performed on a test column outside the improvement area, but in the vicinity of the buildings. On this behalf one test column surrounded by at least 4 columns shall be erected in the prospected pattern (triangular grid 1.75 m * 1.75 m). 

The load test shall be made on the basis on previous standard ASTM D1194, which is actually withdrawn. However, the bearing plate shall be of pre cast reinforced concrete of dimensions 1.5m * 1.5 m. The bearing plate shall be centered over single stone column. 

The load on bearing plate shall be applied using one hydraulic jack reacting against a kentledge of concrete blocks placed over a steel platform. 

The bearing plate shall be loaded gradually in 25 % equal increments. Each load shall be maintained until the rate of settlement has subsided which is universally recognized as being less than or equal to 0.25 mm per hour. The minimum holding time however shall be 15 min. The rate of settlement (mm/hr) shall be noted from the last two readings of each load step. 

Load shall be incrementally increased to 150 % of required allowable bearing capacity. This test load shall be held until the rate of settlement subsides to less than or equal to 0.25 mm per hour but not less than 2 hours in order to confirm results. 

After this the plate load shall be unloaded also in 25 % increments. Heave shall be monitored after each unloading step until the rate of heave has subsided which is universally recognized as being less than or equal to 0.25 mm per hour. 

Settlement readings shall be taken at four dial gauges with a least count of 0.01 mm placed at the four corners of the load plate. The gauges shall be placed over two reference beams placed parallel at either side of the footing. The reference beams shall be independently supported at a distance of at least 3 m from the center of the bearing plate. 

Prior to commencement of the plate load test all equipment and gauges shall be calibrated. Drawings of the test arrangement, calibration sheets, monitoring form sheets and description of test procedure shall be provided to the Geotechnical Expert for approval and endorsement. 

Figure 10: Plate Load Test
Figure 11: Plate Load Test

5.4 Pre-CPTs 

Prior to commencement of soil improvement a number of  Cone Penetration Tests (CPT) shall be performed at the specified locations approved by consultant.

Test locations shall be evenly spread over the improvement areas. Elevation and coordinates of test locations shall be surveyed. Test results shall be provided to the Geotechnical Expert prior to commencement of soil improvement.

5.5 Post-CPTs

After finalization of the soil improvement a number of  CPTs shall be performed in the vicinity of the pre-CPTs. Since CPTs cannot be applied in the centre of the stone columns, it is recommended to perform them in the vicinity of columns (at their periphery) as well as between columns. The monitoring logs shall provide information about the location of the CPTs related to the next column. 

All test results shall be provided to the Geotechnical Expert of approval.

6.0 REFERRED DOCUMENTS 

The stone column design is based on the Geotechnical Investigation Report, prepared by Soil Investigation team

Daily Report Format


Design and Specification of Self Completed Project 2010-2011

Project Name:  Saline Water Conversion Corporation (SWCC) Ras az Zawer Saudi Arabia

Attachments
1 Calculation Sheets
   1.1 Main Pump House
   1.2 Booster Pump House
   1.3 Electrical Building

2 Design Drawings
   2.1 Main Pump House
   2.2 Booster Pump House
   2.3 Electrical Building

1 SCOPE OF SOIL IMPROVEMENT WORK

Due to unfavorable soil conditions in the foundation report it was proposed to perform
soil improvement by vibro replacement (stone columns). This procedure is required in
the area of Main Pump House and Booster Pump House between axes 25 and 29 as
well as in the area of the Electrical Building. Additionally at the pump houses stone
columns shall be installed in a widened grid beyond axes 25 in order to create a smooth
transition from the improved to the unimproved area.

This report deals with the stone column design and prospected measures for quality
assurance (QA) and quality control (QC).

2 Referred Documents
The stone column design is based on the Geotechnical Investigation Report, prepared
by Gulf Consult and the Foundation Report prepared by Ingenieuburo Duffel.

On 29 Sept. 2010 and 11 Oct.2010 Gulf Consult presented two reports dealing with
Cone Penetration Tests (CPT) which have been conducted in this area on request of
the Geotechnical Expert. The results of these CPTs have also been considered for the
stone column design.

Furthermore guide drawings from Main Pump House and Booster Pump House and
tender drawings from Electrical Building have been provided.

3 Subsoil Conditions

During the course of soil investigation a number of four different layers has been
explored which have been briefly described as follows:

Layer I: medium dense silty Sand                    SPT'N' values:                  10≤n30≤22
Layer II: very loose Sand/ soft clayey Sand     SPT'N' values:                   1 ≤n30≤ 5
Layer III: dense Sand with Silt                         SPT'N' values:                   20≤n30≤65
Layer VI: very dense Sand/very stiff fat Clay  SPT'N' values:                   30≥100

The layer to be improved is layer II. The bottom of this layer has been explored at 6 m
below existing ground level at time of soil investigation (EGL) at Booster Pump
House and Electrical Building and at 5 m below EGL at Main Pump House (mean
values). The groundwater level is expected at 1 m below EGL.


Prior to commencement of soil improvement the area shall be raised by appr. 1.0 m
select fill material as specified in project specification C-03. Further backfill is
required after soil improvement in order to reach the prospected foundation levels. In
this report the select fill material is called "Layer 0".


Station zero level is scheduled at 6.00 masl which is appr. 4.7 m above EGL.

All calculations are based on the assumption that the working level is 1.0 m above
EGL at time of soil investigation, i. e. around 2.3 masl.

4 Soil Improvement Design

   4.1 General
Soil improvement design is carried out using the computer software called "GRETA"
provided by company GETEC. This computer software is based on the publication
"PRIEBE: The design of vibro replacement, Ground Engineering, Dec. 1995"

For given bearing pressure and existing soil conditions the computer program
GRETA calculates the suitable spacing of stone columns of specific nominal
diameter, depth and quality. The improvement factor "n2" is defined as the ratio of the
Young's modulus of improved soil versus the Young's modulus of unimproved soil.

Based on settlement calculations provided by the Geotechnical Expert in the
foundation proposal an improvement factor n2 = 3 has been postulated.

In the presented calculations a nominal diameter of stone columns of 80 cm has been
adopted. The stone columns shall be erected using well compactable crushed stone
material. For the design a shear resistance of φ' = 42.5 º has been considered for the
stone material.

Soil parameters introduced into the design calculation have been adopted from the
foundation report as follows:

γ
[k//m3]
γ'
[k//m3]
φ'
[º]
c'
[k//m2]
E
[M// m2]
v
[-]
Layer 0
21
-
37,5
0
40
0,3
Layer I
21
12
32,5
0
10
0,33
Layer II
18
8
25
0
2
0,35

                   Table 1: Soil Parameters
As written in the foundation proposal the expected soil pressure of all structures is
less than the net safe bearing capacity of unimproved subsoil. The only purpose of the
soil improvement is to reduce the settlements which are within intolerable limits
without soil improvement. By this reason no calculations regarding this bearing
capacity are required in this design.

4.2 Main Pump House

Design calculation for stone columns at Main Pump House between axes 25 and 29
has been performed based on a triangular grid with distance between columns of 1.75
m and distance between rows of 1.75 m also. Nominal diameter of stone columns is
0.80 m. Calculation yields to an improvement factor n2 = 3.03.

As reported in the foundation proposal the soil improvement shall performed 3.0 m
beyond the boundary of the building area.

Beyond axe 25 a transition zone shall be created in order to allow an intergradation
from the improved to the unimproved area. Based on Cone Penetration Test Results it
is recommended to erect three rows of stone columns in a grid of 2.65 m * 2.65 m
beyond axe 25 and additionally three rows in a grid of 3.50 m * 3.50 m beyond axe
24. The exact location of stone columns in the transition area shall be adopted from
attachment 2.1.

Settlement calculation provided by computer program GRETA yields to overall
settlement after soil improvement of s = 33 mm. This calculated settlement is in good
accordance to settlements calculated by the Geotechnical Expert. However, it shall be
considered, that settlement calculation provided in the foundation report is more
precisely.

In the design calculation the bottom of layer II has been considered at 6.0 m below
working level. On site the foot of each individual stone column must be fixed based
on penetration ratio of the vibrator. Considering the results of Cone Penetration Tests
it is expected that the foot of stone columns will be somewhat deeper than assumed in
the calculation.

Details upon the design calculation may be adopted from attachment 1.1. The relevant
drawing is provided in attachment 2.1.

4.3 Booster Pump House

For the Booster Pump House a triangular grid with distance between columns and
distance between rows of 1.70 m each has been considered in the static design.
Calculated improvement factor is n2 = 3.13; calculated overall settlement after soil
improvement is s = 41 mm.

Beyond axe 25 a transition zone shall be created in order to allow an intergradation
from the improved to the unimproved area. Based on Cone Penetration Test Results it
is recommended to erect three rows of stone columns in a grid of 2.55 m * 2.55 m
beyond axe 25 and additionally three rows in a grid of 3.40 m * 3.40 m beyond axe
24. The exact location of stone columns in the transition area shall be adopted from
attachment 2.2.

The bottom of layers to be improved has been considered at 7.0 m below working
level. Considering the results of Cone Penetration Tests it is expected that the foot of
stone columns will be somewhat deeper than assumed in the calculation.
Further details upon the design calculation may be adopted from attachment 1.2. The

relevant drawing is provided in attachment 2.2.

Further remarks given in item 4.2 shall be considered.

4.4 Electrical Building

In the area of the Electrical Building calculation yields to the conclusion that the grid
may be widened to 2.20 m distance between rows and columns. This is caused by the
matter of fact that the foundation level of the Electrical Building is situated higher
than the foundation level of block foundations at the pump houses. Bottom of stone
columns is considered at 7.00 m below working level which is approximately 9.50 m
below foundation level.

The calculated overall settlement is s = 47 mm. The improvement factor is n2 =- 3.44.
Further details upon the design calculation may be adopted from attachment 1.3. The
relevant drawing is provided in attachment 2.3.

Further remarks given in item 4.2 shall be considered.

5 Quantities

Number of stone columns and linear meter shall be adopted from table 2.

No.of stone columns
Total linear meter

Main Pump House
      Axes 25–29
      Transition zone


203
27


1218
162

Booster Pump House
      Axes 25–29
      Transition zone


210
27


1470
189

Electrical Building

395

2765
Total
882
5804
                   Table 2: Quantities
6 Field QA/QC

  6.1 Quality of back fill material

Prior to commencement of improvement works soil parameters for aggregate material
introduced into the static design calculation must be verified based on laboratory tests.

Grain size analysis, Proctor Test and direct Shear Test shall be performed and results
will be provided to the Geotechnical Expert for approval.

  6.2 Production of Stone Columns

The specific details of each stone column constructed shall be monitored in soil
improvement record sheets including the following information:
- No. and location of column
- Start Time
- Finish Time
- Top of Column (Working Level)
- Termination Depth
- Material Consumption

  6.3 Plate Load Test

Mentioned above

  6.4 Pre-CPTs

Prior to commencement of soil improvement a number of 14 Cone Penetration Tests
(CPT) shall be performed at the following locations:

      3 CPTs at Main Pump House (axe 25 - 29)
      3 CPTs at Booster Pump House (axe 25 - 29)
      8 CPTs at Electrical Building

Test locations shall be evenly spread over the improvement areas. Elevation and
coordinates of test locations shall be surveyed. Test results shall be provided to the
Geotechnical Expert prior to commencement of soil improvement.

  6.5 Post-CPTs

After finalization of the soil improvement a number of 14 CPTs shall be performed in
the vicinity of the pre-CPTs. Since CPTs cannot be applied in the centre of the stone
columns, it is recommended to perform them in the vicinity of columns (at their
periphery) as well as between columns. The monitoring logs shall provide information
about the location of the CPTs related to the next column.

All test results shall be provided to the Geotechnical Expert of approval.

7 Conclusions

With this report the design of stone columns for soil improvement at Main and
Booster Pump House (axis 25 to 29 plus transition zone) and Electrical Building is
presented. The calculation is based on information presently available. In case on any
change in design the static designer should be notified immediately.

Additionally the report gives recommendations upon quality assurance and quality
control.

The Geotechnical Expert shall be continuously informed about the further procedure
onsite. All test results shall be provided to the Geotechnical Expert for approval and
endorsement.
Program GRETA-E, Version  90422, Copyright by GEOStat
RAS AZ ZAWR -  RIYADH WTS PS1 - MAIN PUMP HOUSE                                 ATTACHMENT 1.1
**********************************************************************************
Calculation of a foundation
********************
Kind of treatment: Vibro replacement



Single footing of                  426.36  m2   ( 18.70 m * 22.80 m )  on 139 column (s)

Dead pressure g                    100.00  kN/m2                     live pressure q                       0.00 kN/m2
Reference area                         3.07  m2
Calculation Depth                 23.00  m                              Foundation level                  0.00 m
Depth of column foot             6.00  m
Ground water table                  2.00  m
Properties of installed material (below load level)

No.          Top           gam            phi               c               Dia.              D                    E                   Q                K
                [m]        [kN/m3]         [º]         [kN/m2]        [m]        [MN/m2]     [MN/m2]     [kN/m2

1               0.00          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
2               1.00          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
3               2.00          12.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
4               2.50          12.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
5               6.00          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00
6            23.00          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00

Properties of soil layers (from ground level)

No.          Top           gam            phi               c                ny               D                 A-R             D-R              tau
                   [m]        [kN/m3]         [º]         [kN/m2]                     [MN/m2]                                              [kN/m2]

1              0.00          21.00       37.50            0.00        0.30            54.00             6.10           2.22            0.00
2              1.00          21.00       32.50            0.00        0.33            15.00             6.10           8.00            0.00
3              2.00          12.00       32.50            0.00        0.33            15.00             6.10           8.00            0.00
4              2.50            8.00       25.00            0.00        0.35              3.00             6.10         40.00            0.00
5              6.00          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00
6            23.00          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00

Top    =  top level of layer                                                  Dia.  = column diameter
gam   =  effective bulk density                                          phi   = friction angle
c          =  cohesion                                                                 ny    = Poisson's ratio
A-R    =  area ratio                                                               D-R  = ratio of constrained moduli
D         =   constrained modulus                                          E         = Young's modulus
q          =   admissible stress at elastic deformation (piling)
K         =   adopted coeff. of earth pr.
tau     =   skin friction
Soil improvement
(Relevant for column sections with plastic deformations only!)
The initial support of the columns is considered with K = 1
The proportional load on columns is approximated to m = 1 - 1/n
Mutual support of columns occurs at 91 % of this limited system only


No.        n0,0       n0,1       n0          d (A/AC)         n1,0   n1,1   n1            n1'         fd           fd'          n2          n2'

1            2.09       1.81       2.07      4.54                 1.58    1.43     1.57     1.20      1.07       1.00      1.57       1.20
2            2.06       1.73       2.03      0.76                 1.93    1.64     1.90     1.90      1.23       1.09      2.07       2.07
3            2.06       1.73       2.03      0.76                 1.93    1.64     1.90     1.90      1.36       1.09      2.07       2.07
4            2.04       1.68       2.01      0.13                 2.02    1.66     1.99     1.99      1.53       1.53      3.03       3.03
5                                                                               Layer without columns!

                               Without depth factor                                                       With depth factor
                               (for failure analyses)                                                   (for settlement calculations)
  
No.               m1              phi1               c1                D1                m2              phi2               c2                D
                                          [º]           [kN/m2]     [MN/m2]                               [º]           [kN/m2]     [MN/m2]

1                     0.17          38.39             0.00            64.82             0.17          38.39             0.00            64.82
2                     0.47          37.58             0.00            28.53             0.52          38.00             0.00            31.03
3                     0.47          37.58             0.00            28.53             0.52          38.00             0.00            31.03
4                     0.50          34.60             0.00              5.96             0.67          37.52             0.00              9.10
5                                                                         Layer without columns!

n0                           = basic improvement factor from n0, 0 (grid) and n0, 1 (isolated col.)
d (A/AC)                = addition to the area ratio (due to column compressibility)
n1                           = reduced improvement factor from n1,0 and n1, 1 (column compressib.)
fd                            = depth factor (due to overburden constraint) (fd' = reduced fd)
n2                           = fd' x n1' (n1' = reduced n1 resp. n2)
m1/2                      = proportional load on columns       )
phi1/2                    = friction angle of compound           ) attributable to n1' resp. n2'
c1/2                        = cohesion of compound                   )
D1/2                       = constr. modulus of compound
Settlement of the single footing
at the 1.0 - fold distance of the characteristic point
(at the latest terminated at a pressure ratio of 0.80)


Depth        Settlement         Kind of          Level of       Settlement          Over-           Found.           Press.
                    Improved     Deformation       Utiliz.         Unimproved       burden        Pressure            ratio
[m]              [mm]                                                                 [mm]            [kN/m2]       [kN/m2]
0.00                1.53                Plastic                                         1.83                 0.0             100.0      10000.00
1.00                3.04                Plastic                                         6.28              21.0               98.2               4.67
2.00                1.41                Plastic                                         2.92              42.0               90.3               2.15
2.50                9.39                Plastic                                       26.68              48.0               85.1               1.77
3.50                7.87                Plastic                                       23.54              56.0               74.9               1.34
4.50                6.64                Plastic                                       20.97              64.0               66.3               1.04
5.50                2.94                Plastic                                         9.68              72.0               59.5               0.83
                        
                         33                                                                       92
The total settlements are rounded up to full millimeters

Program GRETA-E, Version  90422, Copyright by GEOStat
RAS AZ ZAWR -  RIYADH WTS PS1 - BOOSTER PUMP HOUSE                         ATTACHMENT 1.2
**********************************************************************************
Calculation of a foundation
********************
Kind of treatment: Vibro replacement



Single footing of                  426.36  m2   ( 18.70 m * 22.80 m )  on 147 column (s)

Dead pressure g                    100.00  kN/m2                     Live pressure q                     0.00 kN/m2
Reference area                         2.90  m2
Calculation Depth                 23.00  m                              Foundation level                  0.00 m
Depth of column foot             7.00  m
Ground water table                  2.00  m

Properties of installed material (below load level)
No.          Top           gam            phi               c               Dia.              D                    E                   q                 K
                   [m]        [kN/m3]         [º]         [kN/m2]        [m]        [MN/m2]     [MN/m2]     [kN/m2]

1               0.00          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
2               1.00          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
3               2.00          12.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
4               7.00          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00
5            23.00          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00

Properties of soil layers (from ground level)

No.          Top           gam            phi               c                ny               D                 A-R             D-R              tau
                  [m]        [kN/m3]         [º]         [kN/m2]                     [MN/m2]                                               [kN/m2]

1              0.00          21.00       37.50            0.00        0.30            54.00             5.77           2.22            0.00
2              1.00          21.00       32.50            0.00        0.33            15.00             5.77           8.00            0.00
3              2.00            8.00       25.00            0.00        0.35              3.00             5.77         40.00            0.00
4              7.00          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00
5            23.00          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00

Top   =  top level of layer                                                   Dia.  = column diameter
gam   =  effective bulk density                                          phi   = friction angle
c          =  cohesion                                                                 ny    = Poisson's ratio
A-R    =  area ratio                                                               D-R  = ratio of constrained moduli
D         =   constrained modulus                                          E         = Young's modulus
q        =    admissible stress at elastic deformation (piling)
K         =   adopted coeff. of earth pr.
tau    =   skin friction
Soil improvement
(Relevant for column sections with plastic deformations only!)

The initial support of the columns is considered with K = 1
The proportional load on columns is approximated to m = 1 - 1/n
Mutual support of columns occurs at 92 % of this limited system only


No.        n0,0       n0,1       n0          d (A/AC)         n1,0   n1,1   n1            n1'         fd           fd'          n2          n2'

1            2.17       1.81       2.14      4.54                 1.60    1.42     1.59     1.21      1.07       1.00      1.59       1.21
2            2.14       1.73       2.10      0.76                 1.98    1.63     1.95     1.95      1.24       1.08      2.11       2.11
3            2.12       1.68       2.08      0.13                 2.09    1.66     2.05     2.05      1.53       1.53      3.13       3.13
4                                                                               Layer without columns!


                          Without depth factor                                                                With depth factor
                            (for failure analyses)                                                          (for settlement calculations)
No.               m1              phi1               c1                D1                m2              phi2               c2                D2
                                             [º]           [kN/m2]     [MN/m2]                               [º]           [kN/m2]     [MN/m2]


1                0.17            38.43            0.00                65.44        0.17            38.43            0.00                65.44
2                0.49            37.72            0.00                29.30        0.53            38.09            0.00                31.63
3                0.51            34.87            0.00                  6.15        0.68            38.69            0.00                  9.39
4                                                                         Layer without columns!


n0                           = basic improvement factor from n0, 0 (grid) and n0, 1 (isolated col.)
d (A/AC)                = addition to the area ratio (due to column compressibility)
n1                           = reduced improvement factor form n1,0 and n1, 1 (column compressib.)
fd                            = depth factor (due to overburden constraint) (fd' = reduced fd)
n2                           = fd' x n1' (n1' = reduced n1 resp. n2)
m1/2                      = proportional load on columns       )
phi1/2                    = friction angle of compound           ) attributable to n1' resp. n2'
c1/2                        = cohesion of compound                   )
D1/2                       = constr. modulus of compound      )


Settlement of the single footing
at the 1.0 - fold distance of the characteristic point
(at the latest terminated at a pressure ratio of 0.65)


Depth        Settlement         Kind of          Level of       Settlement          Over-           Found.           Press.
                      Improved     Deformation       Utiliz.         Unimproved       Burden        Pressure            ratio
 [m]                      [mm]                                                                 [mm]            [kN/m2]       [kN/m2]
0.00                    1.51          Plastic                                              1.83                 0.0             100.0      10000.00
1.00                    2.98          Plastic                                              6.28              21.0               98.2               4.67
2.00                  10.06          Plastic                                            28.37              42.0               90.3               2.15
3.00                    8.44          Plastic                                            25.05              50.0               79.9               1.60
4.00                    7.09          Plastic                                            22.19              58.0               70.4               1.21
5.00                    6.00          Plastic                                            19.90              66.0               62.7               0.95
6.00                    5.14          Plastic                                            18.08              74.0               56.7               0.77
                            
                            41                                                                     122

The total settlements are rounded up to full millimeters

Properties of installed material (below load level)

Program GRETA-E, Version  90422, Copyright by GEOStat
RAS AZ ZAWR -  RIYADH WTS PS1 - Electrical Building                                        ATTACHMENT 1.3
**********************************************************************************

Calculation of a foundation
********************
Kind of treatment: Vibro replacement



Single footing of                   1885.73  m2   ( 21.70 m * 86.90 m )  on 390 column (s)

Dead pressure g                    100.00  kN/m2                     Live pressure q                     0.00 kN/m2
Reference area                         4.84  m2
Calculation Depth                 23.00  m                              Foundation level                  0.00 m
Depth of column foot             9.50  m                              Depth of column head       2.50 m
Ground water table                  4.50  m


No.          Top           gam            phi               c               Dia.              D                    E                   q                 K
                    [m]        [kN/m3]         [º]         [kN/m2]        [m]        [MN/m2]     [MN/m2]     [kN/m2]

1               0.00          20.00       42.50            0.00         0.00            120.0                0.0            25.0         1.00
2               2.50          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
3               3.50          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
4               4.00          20.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
5               4.50          12.00       42.50            0.00         0.80            120.0                0.0            25.0         1.00
6               9.50          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00
7            23.00          12.00       40.00            0.00         0.00            100.0                0.0              0.0         1.00

Properties of soil layers (from ground level)


No.          Top           gam            phi               c                ny               D                 A-R             D-R              tau
                   [m]        [kN/m3]         [º]         [kN/m2]                     [MN/m2]                                              [kN/m2]

1              0.00          21.00       37.50            0.00        0.30            54.00        ******           2.22            0.00
2              2.50          21.00       37.50            0.00        0.30            54.00             9.62           2.22            0.00
3              3.50          21.00       32.50            0.00        0.33            15.00             9.62           8.00            0.00
4              4.00          18.00       25.00            0.00        0.35              3.00             9.62         40.00            0.00
5              4.50            8.00       25.00            0.00        0.35              3.00             9.62         40.00            0.00
6              9.50          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00
7            23.00          12.00       37.50            0.00        0.30            40.00        ******           2.50            0.00

Top   =  top level of layer                                                   Dia.    = column diameter
gam  =   effective bulk density                                          phi    = friction angle
c        =  cohesion                                                                  ny     = Poisson's ratio
A-R  =  area ratio                                                                 D-R  = ratio of constrained moduli
D        =   constrained modulus                                           E         = Young's modulus
q        =   admissible stress at elastic deformation (piling)
K        =   adopted coeff. of earth pr.
tau    =   skin friction
Soil improvement
(Relevant for column sections with plastic deformations only!)
The initial support of the columns is considered with K = 1
The proportional load on columns is approximated to m = 1 - 1/n
Mutual support of columns occurs at 94 % of this limited system only


No.        n0,0       n0,1       n0          d (A/AC)         n1,0   n1,1   n1            n1'         fd           fd'          n2          n2'

1                                                                               Layer without columns!
2            1.65       1.65       1.65             4.54           1.43    1.43     1.43     1.13      1.45       1.00      1.43       1.13
3            1.63       1.63       1.63             0.76           1.58    1.58     1.58     1.58      1.63       1.14      1.80       1.73
4            1.62       1.62       1.62             0.13           1.61    1.61     1.61     1.61      1.78       1.78      2.86       2.86
5            1.62       1.62       1.62             0.13           1.61    1.61     1.61     1.61      2.14       2.14      3.44       3.44
6                                                                               Layer without columns!

                             without depth factor                                                             with depth factor
                               (for failure analyses)                                                   (for settlement calculations)

No.               m1              phi1               c1                D1                m2              phi2               c2                D2
                                         [º]           [kN/m2]     [MN/m2]                               [º]           [kN/m2]     [MN/m2]

1                                                                        Layer without columns!
2                0.11            38.10            0.00                60.86             0.11       38.10            0.00                60.86
3                0.37            36.49            0.00                23.71             0.42       37.04            0.00                25.92
4                0.38            32.49            0.00                  4.83             0.65       37.20            0.00                  8.59
5                0.38            32.49            0.00                  4.83             0.71       38.15            0.00                10.32
6                                                                        Layer without columns!

n0                           = basic improvement factor from n0, 0 (grid) and n0, 1 (isolated col.)
d (A/AC)                = addition to the area ratio (due to column compressibility)
n1                           = reduced improvement factor from n1,0 and n1, 1 (column compressib.)
fd                            = depth factor (due to overburden constraint) (fd' = reduced fd)
n2                           = fd' x n1' (n1' = reduced n1 resp. n2)
m1/2                      = proportional load on columns       )
phi1/2                    = friction angle of compound           ) attributable to n1' resp. n2'
c1/2                        = cohesion of compound                   )
D1/2                       = constr. modulus of compound      )

Settlement of the single footing
at the 1.0 - fold distance of the characteristic point
(at the latest terminated at a pressure ratio of 0.50)


Depth        Settlement         Kind of          Level of       Settlement          Over-            Found.           Press.
                      Improved     Deformation       Utiliz.         unimproved       burden         Pressure            ratio
      [m]               [mm]                                                                [mm]            [kN/m2]        [kN/m2]
0.00               1.84                                                                         1.84                 0.0             100.0      10000.00
1.00               1.80                                                                         1.80               21.0               99.2               4.72
2.00               0.87                                                                         0.87               42.0               95.3               2.27
2.50               1.47                Plastic                                              1.66               52.5               92.5               1.76
3.50               1.65                Plastic                                              2.84               73.5               86.7               1.18
4.00               4.81                Plastic                                            13.76               84.0               83.9               1.00
4.50               8.61                Plastic                                            26.28               93.0               81.2               0.87
5.50               7.66                Plastic                                            24.79            101.0               76.5               0.76
6.50               6.83                Plastic                                            23.49            109.0               72.3               0.66
7.50               6.08                Plastic                                            22.32            117.0               68.6               0.59
8.50               5.14                Plastic                                            21.27            125.0               65.3               0.52

                        47                                                                            141
The total settlements are rounded up to full millimeters

























No comments:

Post a Comment